Studiehåndbok 2019-2020
   
   
  
MA411 Fordypning i idrettsfysiologi  (10 sp) 
Faktaboks
EmnekodeMA411
EmnenavnFordypning i idrettsfysiologi
Studiepoeng10 sp
UndervisningsspråkNorsk
AnsvarligAdam Sharples
TidspunktVår
Innledning

Emnet bygger videre på den delen av MA410 som omhandler hvordan de fysiologiske systemene påvirker prestasjonsevnen i kraftkrevende og utholdenhetskrevende aktiviteter og hvordan trening kan påvirke disse systemene. Emnet gir en dypere innsikt i de cellulære mekanismene som ligger til grunn for de tilpasningen vi ser i hjerte, sirkulasjonssystemet og skjelettmuskulatur ved fysisk trening. Seminaret vil rette seg primært mot studenter som ønsker å fordype seg i den fysiologiske bakgrunnen for hvordan fysisk aktivitet, inaktivitet og forhold i miljøet kan påvirke menneskekroppens fysiske yteevne.

Mål

Studentene skal

  • forstå hvilke systemer som ligger til grunn for fysisk prestasjonsevne på cellenivå i hjerte- og skjelettmuskulatur
  • kunne gjøre rede for viktige cellulære tilpasninger til styrketrening og hvilke mekanismer som setter i gang og styrer disse tilpasningene
  • kunne gjøre rede for viktige cellulære tilpasninger til utholdenhetstrening og hvilke mekanismer som setter i gang og styrer disse tilpasningene
  • kritisk kunne drøfte resultater fra sentral forskning innenfor området.
Organisering og arbeidsformer

Undervisningen vil skje gjennom ordinære forelesninger, diskusjoner og arbeid i grupper. Det legges opp til to ukentlige plenumssamlinger, dels med ordinære forelesninger og dels med rapportering fra gruppearbeid. Studentene vil mellom seminarene arbeide med sentrale fagemner i grupper på 3-4 studenter.

Arbeidskrav
For å gå opp til eksamen kreves godkjent oppmøte (80 %) og aktiv deltakelse på seminaret herunder fremleggelse av individuelle oppgaver/gruppeoppgaver som vil bli vurdert til godkjent/ikke godkjent. Antall fremleggelser vil bli spesifisert ved emnestart.

Vurdering

Studentene skal ved slutten av seminaret skrive en individuell oppgave som en 14-dagers hjemmeeksamen. Oppgaven trekkes. Besvarelsen skal være på maksimalt 6500 ord inklusive litteraturliste. Det gis gradert karakter.

Vi gjør oppmerksom på at oppgaver som leveres i WISEflow vil bli kjørt gjennom plagiatkontrollprogrammet Urkund.

Pensum

Hovedparten av litteraturen vil være vitenskapelige artikler (oversikts- og originalartikler) som foreleserne velger. Artiklene vil variere fra år til år. Artiklene kan nedlastes via biblioteket på NIH.

Kjernelitteratur

1 BOOK:
MacIntosh, B. R., Gardiner, P. F., & McComas, A. J. (2006). Skeletal muscle: Form and function (2nd ed.). Champaign, Ill.: Human Kinetics.
* You can find the book in the library here: ORIA


1 ELECTRONIC ARTICLE
:
Review:
Sharples, A. P. (2017). Cellular and molecular exercise physiology: A historical perspective for the discovery of mechanisms contributing to skeletal muscle adaptation. Cellular and Molecular Exercise Physiology, 5(1), 1-13. https://doi.org/10.7457/cmep.v5i1.e10
* This article is available online: Click here to download.
____________________________________________________________________________________________________________________________________________


21 ELECTRONIC ARTICLES
:

** NB! To open electronic articles off campus, you must use the following VPN connection: 
Click here to download.

WEEK 3-4:
TOPIC 1: Molecular Regulation of Skeletal Muscle Hypertrophy & Epigenetics
Delivered: Adam Sharples.

Overview - Book chapter: 
Sharples, A. P., & Seaborne, R. A. (2019). Chapter ten: Exercise and DNA methylation in skeletal muscle. I D. Barh & I. I. Ahmetov (Eds.), Sports, exercise, and nutritional genomics: Current status and future directions (pp. 211-229). London: Academic Press.
* This PDF is available through Canvas.
(Cleared through BOLK 12.19./NIH bibl. - AGG)
 
Original Articles:
Sailani, M. R., Halling, J. F., Møller, H. D., Lee, H., Plomgaard, P., Pilegaard, H., . . . Regenberg, B. (2019). Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Scientific Reports, 9(1), 3272. https://doi.org/10.1038/s41598-018-37895-8
* This article is available online: Click here to download.

Turner, D. C., Seaborne, R. A., & Sharples, A. P. (2019). Comparative transcriptome and methylome analysis in human skeletal muscle anabolism, hypertrophy and epigenetic memory. Scientific Reports, 9(1), 4251. https://doi.org./10.1038/s41598-019-40787-0.
* This article is available online: Click here to download.


TOPIC 2: Cellular models for studying skeletal muscle adaptation.
Delivered: Piotr Gorski.

Overview Article:

Kasper, A. M., Turner, D. C., Martin, N. R. W., & Sharples, A. P. (2018). Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. Journal of Cellular Physiolohy, 233(3), 1985-1998. https://doi.org/10.1002/jcp.25840
* This article is available through Canvas.
(OK based on §15 of the Copyright Law)

Orginal Articles:
Aguilar-Agon, K. W., Capel, A. J., Martin, N. R. W., Player, D. J., & Lewis, M. P. (2019). Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: Molecular and phenotypic responses. Journal of Cellular Physiology, 234(12), 23547-23558. https://doi.org/10.1002/jcp.2892.
* This article is available through Canvas.
(OK based on §15 of the Copyright Law)

Khodabukus, A., Madden, L., Prabhu, N. K., Koves, T. R., Jackman, C. P., Muoio, D. M., & Bursac, N. (2019). Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials, 198, 259-269. https://doi.org/10.1016/j.biomaterials.2018.08.058
* This article is available online: Click here to download.
____________________________________________________________________________________________________________________________________________


WEEK 4-6:

TOPIC 3: Muscle mass and quality during aging and exercise
Delivered: Sive N. Aas.

Overview Article: 
Tieland, M., Trouwborst, I., & Clark, B. C. (2018). Skeletal muscle performance and ageing. Journal of Cachexia, Sarcopenia and Muscle, 9(1), 3-19. https://doi.org/10.1002/jcsm.12238
* This article is available online: Click here to download.

Original Articles:
Breen, L., Stokes, K. A., Churchward-Venne, T. A., Moore, D. R., Baker, S. K., Smith, K., . . . Phillips, S. M. (2013). Two weeks of reduced activity decreases leg lean mass and induces “Anabolic Resistance” of myofibrillar protein synthesis in healthy elderly. The Journal of Clinical Endocrinology & Metabolism, 98(6), 2604-2612. https://doi.org/10.1210/jc.2013-1502
* This article is available online: Click here to download.

Hvid, L. G., Strotmeyer, E. S., Skjødt, M., Magnussen, L. V., Andersen, M., & Caserotti, P. (2016). Voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults: A randomized controlled trial. Experimental Gerontology, 80, 51-56. https://doi.org/10.1016/j.exger.2016.03.018
* This article is available online: Click here to download.

St-Jean-Pelletier, F., Pion, C. H., Leduc-Gaudet, J.-P., Sgarioto, N., Zovilé, I., Barbat-Artigas, S., . . . Gouspillou, G. (2017). The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. Journal of Cachexia, Sarcopenia and Muscle, 8(2), 213-228. https://doi.org/10.1002/jcsm.12139
* This article is available online: Click here to download.


TOPIC 4: Neuroendocrinology of fasting and exercise
Delivered: Jose Calbet

Overview Article: 
Cahill, G. F. Jr. (2006). Fuel metabolism in starvation. Annual Review of Nutrition, 26(1), 1-22. https://doi.org/10.1146/annurev.nutr.26.061505.111258
* This article is available online: Click here to download.

Original Articles:
Calbet, J. A. L., Ponce-González, J. G., Calle-Herrero, J. d. L., Perez-Suarez, I., Martin-Rincon, M., Santana, A., . . . Holmberg, H.-C. (2017). Exercise preserves lean mass and performance during severe energy deficit: The role of exercise volume and dietary protein content. Frontiers in Physiology, 8(483). https://doi.org/10.3389/fphys.2017.00483
* This article is available online: Click here to download.

Johannsen, D. L., Knuth, N. D., Huizenga, R., Rood, J. C., Ravussin, E., & Hall, K. D. (2012). Metabolic slowing with massive weight loss despite preservation of fat-free mass. The Journal of Clinical Endocrinology & Metabolism, 97(7), 2489-2496. https://doi.org/10.1210/jc.2012-1444
* This article is available online: Click here to download.

Müller, M. J., Enderle, J., Pourhassan, M., Braun, W., Eggeling, B., Lagerpusch, M., . . . Bosy-Westphal, A. (2015). Metabolic adaptation to caloric restriction and subsequent refeeding: The Minnesota Starvation Experiment revisited. The American Journal of Clinical Nutrition, 102(4), 807-819. https://doi.org/10.3945/ajcn.115.109173
* This article is available through Canvas.
(OK based on §15 of the Copyright Law)
____________________________________________________________________________________________________________________________________________


WEEK 7-8
:

Topic 5:  Protein and skeletal muscle growth
Delivered: Truls Raastad

Overview Article:
Reidy, P. T., & Rasmussen, B. B. (2016). Role of ingested amino acids and protein in the promotion of resistance exercise-induced muscle protein anabolism. Journal of Nutrition, 146(2), 155-183. https://doi.org/10.3945/jn.114.203208
* This article is available online: Click here to download.

Original Articles:
Atherton, P. J., Kumar, V., Selby, A. L., Rankin, D., Hildebrandt, W., Phillips, B. E., ... Smith, K. (2016). Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men. Clinical Nutrition, 36(3), 888-895. https://doi.org/10.1016/j.clnu.2016.04.025.
* This article is available through Canvas.
(OK based on §15 of the Copyright Law)

Hamarsland, H., Handegard, V., Kåshagen, M., Benestad, H., & Raastad, T. (2019). No difference between spray dried milk and native whey supplementation with strength training. Medicine and Science in Sports Exercise, 51(1), 75-83. https://doi.org/10.1249/MSS.0000000000001758.
* This article is available online: Click here to download.

Macnaughton, L. S., Wardle, S. L., Witard, O. C., McGlory, C., Hamilton, D. L., Jeromson, S., ... Tipton, K. D. (2016). The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiological Reports, 4(15), e12893. https://doi.org/10.14814/phy2.12893.
* This article is available online: Click here to download.


TOPIC 6: Vitamin D in exercise and skeletal muscle adaptation
Delivered: Dr. Daniel Owens

Overview Article:
Owens, D. J., Allison, R., & Close, G. L. (2018). Vitamin D and the Athlete: Current perspectives and new challenges. Sports Medicine, 48(Suppl. 1), 3-16. https://doi.org/10.1007/s40279-017-0841-9
* This article is available online: Click here to download.

Original Articles:
Agergaard, J., Trøstrup, J., Uth, J., Iversen, J. V., Boesen, A., Andersen, J. L., … Langberg, H. (2015). Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men? A randomized controlled trial. Nutrition & Metabolism, 12, 32. https://doi.org/10.1186/s12986-015-0029-y
* This article is available online: Click here to download.

Ricca, C., Aillon, A., Bergandi, L., Alotto, D., Castagnoli, C., & Silvagno, F. (2018). Vitamin D receptor is necessary for mitochondrial function and cell health. International Journal of Molecular Sciences, 19(6), 1672. https://doi.org/10.3390/ijms19061672
* This article is available online: Click here to download.
Norges idrettshøgskole | Sognsveien 220 | Telefon: +47 23 26 20 00 | Fax: 22 23 42 20 | E-post: postmottak@nih.no | webmaster@nih.no